Research News
Scientists Discover Mechanisms Behind A Promising Thermoelectric Material ZnSe2
Date: 2020/10/16 Author: JIA Tiantian

Recently, a research group led by Prof. ZHANG Yongsheng at Institute of Solid State Physics, Hefei Institutes of Physical Science successfully explained the novel physical mechanisms behind Pyrite-type ZnSe2.

Pyrite-type ZnSe2 compound was predicted as a strong anharmonicity and promising thermoelectric (TE) by the same team early this year, while the underlying physical mechanism behind the compound remained ambiguous.

The group analyzed the vibrational spectrums and electrical properties of ZnSe2, and verified its TE properties. Their findings showed that the vibrational spectrums of ZnSe2 were characterized by both the isolated high-frequency optical phonon modes due to the stretching of Se-Se dimers, and the low-frequency optical phonon modes with a strong anharmonicity due to the rattling modes of Zn atoms, especially the rotations of Zn atoms around these dimers. Therefore, they proposed that the existence of localized Se-Se dimers leads to the strong anharmonicity of low-frequency optical phonon modes and the low thermal conductivity.

Furthermore, their analysis of electronic properties showed that ZnSe2 possessed the complex energy isosurfaces of both valence and conduction bands near the Fermi-level, which could contribute to the promising electrical transport properties of p-type and n-type ZnSe2. The low thermal conductivities and promising electrical transport properties led to a large thermoelectric figure of merit of ZnSe2 for both p-type (ZT=2.21) and n-type (ZT=1.87) doping.

Their studies revealed the effect of the physical mechanism behind this TE phenomena which could be used to guide researchers to seek promising thermoelectric materials containing strong nonmetallic dimers.

The research was supported by the National Natural Science Foundation of China, Grant No. 11774347 and 11474283.

Link to the paper: Localized dimers drive strong anharmonicity and low lattice thermal conductivity in ZnSe2

The pyrite-type crystal structures of ZnSe2 (space group Pa3) (Image by JIA Tiantian)

The phonon dispersions and the corresponding distributions of anharmonicity in ZnSe2. The color denotes the values of anharmonicity. (image by JIA Tiantian)

The contribution of the motions of Zn rotations around Se-Se dimers to the low-frequency optical phonon modes in ZnSe2. The motion of Zn rotations around Se-Se dimers vector is illustrated as an insert. The color denotes the values of contribution. (Image by JIA Tiantian)


Hefei Institutes of Physical Science (http://english.hf.cas.cn/)
Email: zhous@hfcas.ac.cn


Visiting news
Contact Us
Copyright @ 2015 Hefei Institutes of Physical Science, CAS All Rights Reserved