HOME

Scientists Develop Intelligent Fault Diagnosis Method for Nuclear Power Plants

May 07, 2021 | By GE Daochuan

Recently, the research group from Institute of Nuclear Energy Safety Technology, Hefei Institutes ofPhysical Science (HFIPS), made new progress in intelligent fault diagnosis methods for complex systems of nuclear power plants (NPP), which provided theoretical and methodological support for fault diagnosis of the complex systems of the NPP.

Fault diagnosis technology is an important part of the nuclear power plant operation support system, which contributes to the safety and reliability of nuclear energy production. At present, the network structure model used in fault diagnosis usually needs professional design, which is time-consuming and labor-intensive, leading to low efficiency. Therefore, how to optimize the network structure of fault diagnosis and improve the efficiency and accuracy of fault diagnosis is of great significance.

In this study, the researchers first analyzed the characteristics of NPP operation data, then established a data-driven fault diagnosis model for complex systems of NPP. In the end, they established the fault diagnosis model of the complex systems of NPP basing on a data-driven method, and developed an adaptive fault diagnosis method basing on the combination of non-dominated genetic algorithm with elite retention strategy and convolutional neural network algorithm(NSGAII-CNN).

The research results showed significant advantages of the proposed method over the three current classical CNN architecture models in terms of fault diagnosis efficiency and model structure construction, providing theoretic guidance for fault diagnosis of complex systems in NPP.

This contribution is supported by the National Natural Science Foundation of China (71901203), and the National Key R&D Program of China (2018YFB1900301).

Link to paper: A data-driven adaptive fault diagnosis methodology for nuclear power systems based on NSGAII-CNN 

 

Comparisons of average diagnostic error and complexity (Image by GE Daochuan)

 

The validation accuracy and loss changes of 50 epochs (Image by GE Daochuan)

Contact:

ZHAO Weiwei
Hefei Institutes of Physical Science (http://english.hf.cas.cn/)
Email: annyzhao@ipp.ac.cn

Attachments Download:
Contact

Reference
Related Articles
Copyright © Hefei Institutes of Physical Science, CAS All Rights Reserved