With a reasonable and effective calculation method, physicists from Institute of Plasma Physics, Hefei Institutes of Physical Science of Chinese Academy of Sciences, successfully calculated the maximum allowable offset of simultaneous position and angle migration under the premise of extremely many variables.
Recently, a research team led by Prof. QIN Xiaoying from Hefei Institutes of Physical Science of Chinese Academy of Sciences found the thermoelectric properties of N-type Bi2Te2.7Se0.3(BTS) could be improved by introducing a small amount of Ag9AlSe6 nanoparticles into BTS matrix.
Atmospheric conditions vary significantly in terms of the temporal and spatial scales. The purpose of atmospheric correction based on radiative transfer model is to remove the atmospheric radiative effect on remote sensing images, but it is always limited by the difficulty in obtaining atmospheric parameters that match image in terms of the temporal and spatial scale.
Recently, a research team led by Professor GAO Xiaoming from Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science of Chinese Academy of Sciences developed a new type of spectrometer which is capable of simultaneous remote sensing of atmospheric CH4, H2O and N2O.
Recently, a research team led by associate Prof. XU Zhenyu from Hefei Institutes of Physical Science, Chinese Academy of Sciences suggested a new method to detect atmospheric greenhouse gas column with high-resolution laser heterodyne spectroscopy.